Особенности строения и функции аксонов и дендритов.

Аксон в анатомии человека- это соединяющая нейронная структура. Она соединяет нервные клетки со всеми органами и тканями, обеспечивая тем самым обмен импульсов по всему телу.

Аксон (от греческого— ось) — мозговое волокно, длинный, вытянутый фрагмент мозговой клетки (нейрона), отросток или нейрит, участок, транслирующий электросигналы на дистанции от самой мозговой клетки (сомы).

Множеству клеток нервов присущ только один отросток; клетки в малом количестве вообще без нейтритов.

Аксон выглядит как вытянутый отросток конусообразной формы, продолжительность и окружность которого различна и зависит от размера мозговой клетки.

Несмотря на то, что аксоны отдельных клеток нервов короткие, как правило, они характеризуются весьма существенной длиной. К примеру, отростки двигательных спинномозговых нейронов, которые передают мышцы стопы, могут доходить в длину до 100 см. Основанием всех аксонов является небольшой фрагмент треугольной формы — холмик нейтрита, — ответвляющийся от самого тела нейрона. Внешний защитный слой аксона называется аксолемма (от греческого axon — ось + eilema — оболочка), а его внутренняя структура аксоплазма.

Клеточная мембрана

Этот элемент обеспечивает функцию барьера, отделяя внутреннюю среду от находящейся снаружи нейроглии. Тончайшая пленка состоит из двух слоев белковых молекул и находящихся между ними фосфолипидов. Строение мембраны нейрона предполагает наличие в ее структуре специфических рецепторов, отвечающих за узнавание раздражителей. Они обладают выборочной чувствительностью и при необходимости «включаются» при наличии контрагента. Связь внутренней и наружной сред происходит через канальцы, пропускающие ионы кальция или калия. При этом они открываются или закрываются под действием белковых рецепторов.

Благодаря мембране клетка имеет свой потенциал. При передаче его по цепочке происходит иннервация возбудимой ткани. Контакт мембран соседствующих нейронов происходит в синапсах. Поддержание постоянства внутренней среды – это важная составляющая жизнедеятельности любой клетки. И мембрана тонко регулирует концентрацию в цитоплазме молекул и заряженных ионов. При этом происходит транспорт их в необходимых количествах для протекания реакций метаболизма на оптимальном уровне.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны

— небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны

— нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.

Биполярные нейроны

— нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны

— нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны

— являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны

(чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны

(эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны

(вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными.

Секреторные нейроны

— нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. При классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину аксона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов.

По количеству отростков выделяют следующие морфологические типы нейронов:

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Строение нейронов

Схема нейрона

Тело клетки

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), ограниченной снаружи мембраной из липидного бислоя. Липиды состоят из гидрофильных головок и гидрофобных хвостов. Липиды располагаются гидрофобными хвостами друг к другу, образуя гидрофобный слой. Этот слой пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: в форме глобул на поверхности, на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20—30 нм) — состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) — вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) — состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии.(Нейроглия

, или просто глия (от др.-греч. νεῦρον — волокно, нерв + γλία — клей), — совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в мозге примерно равно количеству нейронов).

В теле нейрона выявляется развитый синтетический аппарат, гранулярная эндоплазматическая сеть нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus — действие) — вырабатывают и посылают команды к рабочим органам. Вставочные — осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Основные статьи: Дендрит

и
Аксон
Схема строения нейрона

Аксон — длинный отросток нейрона. Приспособлен для проведения возбуждения и информации от тела нейрона к нейрону или от нейрона к исполнительному органу. Дендриты — короткие и сильно разветвлённые отростки нейрона, служащие главным местом для образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс

Основная статья: Синапс

Си́напс

(греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона и являются возбуждающими, другие — гиперполяризацию и являются тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Термин был введён английским физиологом Чарльзом Шеррингтоном в 1897 г.

Поврежденная обёртка

Рисунок 5. Нарушение чувствительности по полиневритическому типу. Название «носки — перчатки» связано с тем, что анатомические зоны, соответствующие поражению нервов, похожи на области, покрываемые этими предметами одежды.

сайт dic.academic.ru

Как мне кажется, для человеческого организма вполне подходит следующее правило: если есть орган, значит, к нему должна быть болезнь. В принципе, это правило можно расширить до молекулярных процессов: есть процесс — есть и болезни, связанные с нарушением этого процесса. В случае с миелином это демиелинизирующие заболевания. Их довольно много, но подробнее я расскажу о двух — синдроме Гийена-Барре и рассеянном склерозе. При этих расстройствах повреждение миелина приводит к нарушению адекватного проведения сигнала по нервам, что и обуславливает симптомы болезни.

Синдром Гийена-Барре (СГБ) — это заболевание периферической нервной системы, при котором происходит разрушение миелиновой оболочки, формируемой шванновскими клетками. СГБ является классическим аутоиммунным заболеванием. Как правило, ему предшествует инфекция (часто — вызванная микробом Campylobacter jejuni). Присутствие различных возбудителей в организме человека запускает аутоиммунное повреждение миелина нервных волокон T- и B-лимфоцитами. Клинически это проявляется мышечной слабостью, нарушением чувствительности по типу «носки — перчатки» (полиневритический тип) (рис. 5). В дальнейшем мышечная слабость может нарастать вплоть до полного паралича конечностей и поражения туловищной мускулатуры. Поражения чувствительной нервной системы также могут быть разнообразны: от снижения способности различать собственные движения (нарушение глубокой чувствительности) до выраженного болевого синдрома. При тяжелых формах СГБ главную опасность представляет потеря способности к самостоятельному дыханию, требующая подключения к аппарату искусственной вентиляции легких (ИВЛ). Для лечения СГБ в настоящее время используют плазмаферез (очистку плазмы от вредных антител) и внутривенные вливания препаратов человеческого иммуноглобулина для нормализации иммунного ответа. В большинстве случаев лечение приводит к стойкому выздоровлению.

Рассеянный склероз (РС) заметно отличается от СГБ. Во-первых, это демиелинизирующее заболевание приводит к поражению центральной нервной системы, то есть затрагивает миелин, синтезируемый олигодендроцитами. Во-вторых, с причинами РС до сих пор много неясного: слишком большое разнообразие генетических и средовых факторов задействовано в патогенезе заболевания. Принципиальный момент в запуске РС — нарушение непроницаемости гематоэнцефалического барьера (ГЭБ) для иммунных клеток. В норме ткань мозга отгорожена от всего остального организма этим надежным фильтром, который не пропускает к ней множество веществ и клеток, в том числе иммунных. ГЭБ появляется уже в эмбриональном периоде развития, изолируя ткань мозга от формирующейся иммунной системы. В это время иммунная система человека «знакомится» со всеми существующими тканями, чтобы в дальнейшем, при взрослой жизни, не нападать на них. Мозг и ряд других органов остаются «не представленными» иммунной системе. При нарушении целостности ГЭБ иммунные клетки получают возможность для атаки незнакомых ей тканей мозга. В-третьих, РС отличается более тяжелыми симптомами, которые требуют других терапевтических подходов. Симптоматика зависит от того, где локализуются повреждения нервной системы (рис. 6 и 7). Это может быть шаткость походки, нарушения чувствительности, различные когнитивные симптомы. Для лечения РС используются высокие дозы глюкокортикоидов и цитостатики, а также препараты интерферона и специфические антитела (натализумаб). По-видимому, в дальнейшем будут развиваться новые методы лечения РС, основанные непосредственно на восстановлении миелиновой оболочки в поврежденных участках мозга. Ученые указывают на возможность трансплантации клеток — предшественниц олигодендроцитов или усиления их роста за счет введения инсулиноподобного фактора роста или тиреоидных гормонов [11]. Однако это еще впереди, а пока неврологам недоступны более «молекулярные» методы лечения.


Рисунок 6. Очаги поражения центральной нервной системы при рассеянном склерозе на МРТ выглядят как белые бляшки.

сайт neurology.org


Рисунок 7. В зависимости от места поражения нервной системы при рассеянном склерозе может быть разная симптоматика: от тремора и атаксии при повреждении мозжечка до эмоциональных расстройств при локализации очагов в лобных долях.

сайт diagnosisms.com

Литература

  • Поляков Г. И., О принципах нейронной организации мозга, М: МГУ, 1965
  • Косицын Н. С. Микроструктура дендритов и аксодендритических связей в центральной нервной системе. М.: Наука, 1976, 197 с.
  • Немечек С. и др. Введение в нейробиологию, Avicennum: Прага, 1978, 400 c.
  • Мозг (сборник статей: Д. Хьюбел, Ч. Стивенс, Э. Кэндел и дp. — выпуск журнала Scientific American (сентябрь 1979)). М. :Миp, 1980
  • Савельева-Новосёлова Н. А., Савельев А. В. Устройство для моделирования нейрона. А. с. № 1436720, 1988
  • Савельев А. В.
    Источники вариаций динамических свойств нервной системы на синаптическом уровне // журнал “Искусственный интеллект”, НАН Украины. — Донецк, Украина, 2006. — № 4. — С. 323—338.

Важная обёртка

Миелинизация (постепенная изоляция нервных волокон миелином) начинается у людей уже в эмбриональном периоде развития. Первыми этот путь проходят подкорковые структуры. В течение первого года жизни происходит миелинизация отделов периферической и центральной нервной системы, отвечающих за двигательную активность. Миелинизация участков головного мозга, регулирующих высшую нервную деятельность, заканчивается к 12–13 годам. Из этого видно, что миелинизация тесно связана со способностью отделов нервной системы осуществлять специфические для них функции. Вероятно, именно активная работа волокон до рождения запускает их миелинизацию.

Дифференцировка клеток — предшественниц олигодендроцитов зависит от ряда факторов, связанных с работой нейронов. В частности, работающие отростки нейронов могут выделять белок нейролигин 3, который способствует пролиферации и дифференциации клеток-предшественниц [4]. В дальнейшем созревание олигодендроцитов происходит за счет ряда других факторов. В статье с характерным названием «Насколько велик миелинизирующий оркестр?» описывается происхождение олигодендроцитов в разных частях мозга [5]. Во-первых, в различных частях мозга олигодендроциты начинают созревать в разное время. Во-вторых, за их созревание отвечают разные клеточные факторы, что тоже зависит от региона нервной системы (рис. 3). У нас может возникнуть вопрос: а сходны ли между собой олигодендроциты, появившиеся с таким расхождением в стартовых данных? И насколько схож у них миелин? В целом, авторы статьи считают, что между популяциями олигодендроцитов из разных участков головного мозга действительно существуют различия, и обусловлены они во многом именно местом закладки клеток, воздействием на них окружающих нейронов. И всё же типы миелина, синтезируемые разными пулами олигодендроцитов, не имеют настолько больших отличий, чтобы они не были взаимозаменяемыми.


Рисунок 3. Различия во времени закладки олигодендроцитов в разных отделах головного мозга и в клеточных факторах, влияющих на их развитие.

[5]

Сам процесс миелинизации нервных волокон в центральной нервной системе происходит следующим образом (рис. 4). Олигодендроциты выпускают несколько отростков к аксонам разных нейронов. Входя с ними в контакт, отростки олигодендроцитов начинают оборачиваться вокруг них и расползаться по длине аксона. Количество оборотов постепенно увеличивается: в некоторых участках ЦНС их число доходит до 50. Мембраны олигодендроцитов становятся всё более тонкими, распространяясь по поверхности аксона и «выдавливая» из себя цитоплазму. Чем раньше слой миелина был обернут вокруг нервного окончания, тем более тонким он будет. Самый внутренний слой мембраны остается довольно толстым — для осуществления метаболической функции. Новые слои миелина наматываются поверх старых, перекрывая их так, как показано на рисунке 4 — не только сверху, но и увеличивая площадь аксона, покрытую миелином.


Рисунок 4. Миелинизация нервного волокна. Мембрана олигодендроцита наматывается на аксон, постепенно уплотняясь с каждым оборотом. Внутренний, прилегающий к аксону слой мембраны остается относительно толстым, что необходимо для выполнения метаболической функции. На разных частях рисунка (а-в) с разных ракурсов показано постепенное наматывание новых слоев миелина на аксон. Красным цветом выделен более толстый, метаболически активный слой, синим — новые уплотняющиеся слои. Внутренний слой миелина (inner tongue на части б) охватывается всё новыми и новыми слоями мембраны не только сверху, но и по бокам (в), вдоль аксона.

[6]

Миелинизация нервных волокон олигодендроцитами также значимо зависит от белка нейрегулина 1. Если он не воздействует на олигодендроциты, то в них запускается программа миелинизации, не учитывающая активность нервной клетки. Если же олигодендроциты получили сигнал от нейрегулина 1, то далее они начнут ориентироваться на работу аксона, и миелинизация будет зависеть от интенсивности выработки глутамата и активации им специфических NMDA-рецепторов на поверхности олигодендроцитов [6]. Нейрегулин 1 — ключевой фактор для запуска процессов миелинизации и в случае шванновских клеток [7].

Строение нейрона

На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.

Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.

Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.

Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.

Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.

Функции

Основная задача нейронов – переработка данных. С их помощью осуществляется получение, обработка, передача информации отделам нервной и других систем организма.

Если дендриты проводят сигналы по направлению к телу нервной клетки (перикариону), то аксональный отросток передает импульсы от перикариона к другим клеткам.

Основная функция аксонов – проведение импульсов в пределах нейрональной сети и к исполнительным органам. Аксональные ответвления относятся к первичным проводниковым путям в нервной системе. Вспомогательная функция – транспорт веществ. При помощи аксонального транспорта осуществляется движение белков, синтезированных в теле, нейромедиаторов, органелл. Многие вещества способны двигаться в обоих направлениях.

В периферических сегментах аксона в него могут проникать вирусы и токсичные вещества, которые перемещаясь к телу нервной клетки, повреждают ее. Аксональный транспорт зависит от количества энергии АТФ. Если энергетический уровень АТФ понижается больше, чем в 2 раза, происходит блокировка аксонального транспорта.

Функции аксона заключаются в передаче импульсов. При взаимодействии аксона с телом другого нейрона образуется аксосоматический контакт. Если аксон взаимодействует с дендритами других клеток возникает аксодендритический контакт. Взаимодействие с аксоном другой клетки приводит к образованию аксо-аксонального контакта, который редко происходит в нервной системе, поддерживает тормозные рефлекторные реакции.

Волокна

Вокруг нервных отростков независимо располагаются глиальные оболочки. В комплексе они формируют нервные волокна. Ответвления в них называются осевыми цилиндрами. Существуют безмиелиновые и миелиновые волокна. Они отличаются по строению глиальной оболочки. Безмиелиновые волокна имеют достаточно простое устройство. Подходящий к глиальной клетке осевой цилиндр прогибает ее цитолемму. Цитоплазма смыкается над ним и формирует мезаксон — двойную складку. Одна глиальная клетка может содержать несколько осевых цилиндров. Это «кабельные» волокна. Их ответвления могут переходить в расположенные по соседству глиальные клетки. Импульс проходит со скоростью 1-5 м/с. Волокна данного типа обнаруживаются в ходе эмбриогенеза и в постганглионарных участках вегетативной системы. Миелиновые сегменты толстые. Они расположены в соматической системе, иннервирующей мускулатуру скелета. Леммоциты (глиальные клетки) проходят последовательно, цепью. Они формируют тяж. В центре проходит осевой цилиндр. В глиальной оболочке присутствуют:

  • Внутренний слой нервных клеток (миелиновый). Он считается основным. На некоторых участках между слоями цитолеммы присутствуют расширения, образующие миелиновые насечки.
  • Периферический слой. В нем присутствуют органеллы и ядро – нейрилемма.
  • Толстая базальная мембрана.

Сложная обёртка

Миелин окружает отростки нервных клеток, изолируя их от внешнего воздействия. Это необходимо для более надежной и быстрой передачи сигнала по нервной системе. Благодаря изоляции нервного волокна электрический сигнал не рассеивается и добирается до места назначения без помех. Скорость прохождения сигнала по миелиновым и безмиелиновым волокнам может отличаться на три порядка: от 70 до 140 м/с и от 0,3 до 0,5 м/с соответственно.

По сути миелин — это клеточная мембрана глиальных клеток, многократно обмотанная вокруг аксона. Сама мембрана на 70–75% состоит из липидов и на 25–30% — из белков. В периферической нервной системе донором мембран становятся шванновские клетки, а в центральной — олигодендроциты. Эти клетки бережно обматывают своими мембранами ценные каналы связи, чтобы обеспечить надежное взаимодействие нервной системы и периферических органов. Миелин покрывает нервное волокно не целиком: существуют промежутки между наслоениями миелина, называемые перехватами Ранвье (рис. 1). Есть прямая зависимость между расстоянием от одного промежутка до другого и скоростью распространения нервного импульса по волокну: чем больше расстояние между перехватами Ранвье, тем выше скорость передачи сигнала в нерве [1].


Рисунок 1. Нервное волокно, обернутое миелином. Видны ядра шванновских клеток (nucleus of Schwann cell) и перехваты Ранвье (nodes of Ranvier) — участки аксона, которые не покрыты миелиновой оболочкой.

сайт theclickercenterblog.com

Если говорить о белках, входящих в состав миелина, то надо уточнить, что это не только простые белки. В миелине встречаются гликопротеины — белки, к которым присоединены короткие углеводные последовательности. Важной составляющей миелина является главный структурный белок миелина (myelin basic protein, MBP), впервые выделенный около 50 лет назад. MBP — это трансмембранный белок, который может многократно «прошивать» липидный слой клетки. Его различные изоформы (рис. 2) кодируются геном под названием Golli (gene in the oligodendrocyte lineage). Структурной основой миелина служит изоформа массой 18,5 килодальтон [2].


Рисунок 2. Различные изоформы основного белка миелина (MBP) создаются на основе одного и того же гена. Например, для синтеза изоформы массой 18,5 кДа используются все экзоны, кроме экзона II.

[2]

В состав миелина входят сложные липиды цереброзиды. Они представляют собой аминоспирт сфингозин, соединенный с жирной кислотой и остатком углевода. В синтезе липидов миелина принимают участие пероксисомы олигодендроцитов. Пероксисомы — это липидные пузырьки с различными ферментами (в общей сложности известно около 50 видов пероксисомных энзимов). Эти органеллы занимаются, в частности, β-окислением жирных кислот: жирных кислот с очень длинной цепью (very long chain fatty acids, VLCFA), некоторых эйкозаноидов и полиненасыщенных жирных кислот (ПНЖК, polyunsaturated fatty acids, PUFAs). Поскольку миелин может содержать до 70% липидов, пероксисомы крайне важны для нормального метаболизма этого вещества. Они используют N-ацетиласпартат, вырабатываемый нервной клеткой, для постоянного синтеза новых липидов миелина и поддержания его существования. Кроме этого, пероксисомы принимают участие в поддержании энергетического метаболизма аксонов [3].

Внутреннее строение нейронов

Ядро

нейрона обычно крупное, округлое, с мелкодис­персным хроматином, 1-3 крупными ядрышками. Это отра­жает высокую интенсивность процессов транскрипции в ядре нейрона.

Клеточная оболочка

нейрона способна генерировать и проводить электрические импульсы. Это достигается изме­нением локальной проницаемости её ионных каналов для Na+ и К+, изменением электрического потенциала и быст­рым перемещением его по цитолемме (волна деполяризации, нервный импульс).

В цитоплазме нейронов хорошо развиты все органоиды общего назначения. Митохондрии

многочисленны и обеспе­чивают высокие энергетические потребности нейрона, свя­занные со значительной активностью синтетических процес­сов, проведением нервных импульсов, работой ионных насо­сов. Они характеризуются быстрым изнашиванием и обнов­лением (рис 8-3).
Комплекс Гольджи
очень хорошо развит. Не случайно эта органелла впервые была описана и демонст­рируется в курсе цитологии именно в нейронах. При свето­вой микроскопии он выявляется в виде колечек, нитей, зёр­нышек, расположенных вокруг ядра (диктиосомы). Много­численные
лизосомы
обеспечивают постоянное интенсивное разрушение изнашиваемых компонентов цитоплазмы ней­рона (аутофагия).

Р


ис. 8-3. Ультрастук­турная орга­низация тела нейрона.

Д. Дендриты. А. Ак­сон.

1. Ядро (ядрышко показано стрелкой).

2. Митохондрии.

3. Комплекс Голь­джи.

4. Хроматофильная субстанция (уча­стки гранулярной цито­плаз­мотической сети).

5. Лизосомы.

6. Аксонный холмик.

7. Нейротру­бочки, нейрофиламенты.

(По В. Л. Быкову).

Для нормального функционирования и обновления структур нейрона в них должен быть хорошо развит бело­ксинтезирующий аппарат (рис. 8-3). Гранулярная цитоплаз­матическая сеть

в цитоплазме нейронов образует скопле­ния, которые хорошо окрашиваются основными красителями и видны при световой микроскопии в виде глыбок
хромато­фильного вещества
(базофильное, или тигровое вещество, субстанция Ниссля). Термин субстанция Ниссля сохра­нился в честь учёного Франца Ниссля, впервые ее описав­шего. Глыбки хроматофильного вещества расположены в пе­рикарионах нейронов и дендритах, но никогда не встреча­ются в аксонах, где белоксинтезирующий аппарат развит слабо (рис. 8-3). При длительном раздражении или повреж­дении нейрона эти скопления гранулярной цитоплазматиче­ской сети распадаются на отдельные элементы, что на свето­оптическом уровне проявляется исчезновением субстанции Ниссля (
хроматолиз
, тигролиз).

Цитоскелет

нейронов хорошо развит, образует трёх­мерную сеть, представленную нейрофиламентами (толщиной 6-10 нм) и нейротрубочками (диаметром 20-30 нм). Нейро­филаменты и нейротрубочки связаны друг с другом попереч­ными мостиками, при фиксации они склеиваются в пучки толщиной 0,5-0,3 мкм, которые окрашиваются солями се­ребра.На светооптическом уровне они описаны под назва­нием
нейрофибрилл.
Они образуют сеть в перикарионах нейроцитов, а в отростках лежат параллельно (рис. 8-2). Ци­тоскелет поддерживает форму клеток, а также обеспечивает транспортную функцию – участвует в транспорте веществ из перикариона в отростки (аксональный транспорт).

Включения

в цитоплазме нейрона представлены липид­ными каплями, гранулами
липофусцина
– «пигмента старе­ния» – жёлто-бурого цвета липопротеидной природы. Они представляют собой остаточные тельца (телолизосомы) с продуктами непереваренных структур нейрона. По-види­мому, липофусцин может накапливаться и в молодом воз­расте, при интенсивном функционировании и повреждении нейронов. Кроме того, в цитоплазме нейронов черной суб­станции и голубого пятна ствола мозга имеются пигментные включения
меланина
. Во многих нейронах головного мозга встречаются включения
гликогена
.

Нейроны не способны к делению, и с возрастом их число постепенно уменьшается вследствие естественной ги­бели. При дегенеративных заболеваниях (болезнь Альцгей­мера, Гентингтона, паркинсонизм) интенсивность апоптоза возрастает и количество нейронов в определённых участках нервной системы резко уменьшается.

Сенсорная функция[править | править код]

Различные сенсорные рецепторы возбуждаются различными типами волокон нерва. Proprioceptors возбуждены типом Ia, Ib и II сенсорными волокнами, механорецепторы — типом II и III сенсорными волокнами и типом nociceptors и thermoreceptors.
Сенсорные типы волокна

ТипыКлассификацияДиаметрМиелинСкорость проводимостиСвязанные сенсорные рецепторы
13-20 мкмYes80-120 m/sPrimary receptors of muscle spindle
Ib13-20 мкмYes80-120 m/sGolgi tendon organ
6-12 мкмYes33-75 m/sSecondary receptors of muscle spindle All cutaneous mechanoreceptors
III1-5 мкмThin3-30 m/sFree nerve endings of touch and pressure Nociceptors of neospinothalamic tract Cold thermoreceptors
IV0.2-1.5 мкмNo0.5-2.0 m/sNociceptors of paleospinothalamic tract Warmth receptors

Нервные клетки

Чтобы обеспечивать множественные связи, нейрон имеет особое строение. Кроме тела, в котором сосредоточены главные органеллы, присутствуют отростки. Часть их короткие (дендриты), обычно их несколько, другой (аксон) – он один, и его длина в отдельных структурах может достигать 1 метра.

Строение нервной клетки нейрона имеет такой вид, чтобы обеспечивать наилучший взаимообмен информацией. Дендриты сильно ветвятся (как крона дерева). Своими окончаниями они взаимодействуют с отростками других клеток. Место их стыка называют синапсом. Там происходит прием-передача импульса. Его направление: рецептор – дендрит – тело клетки (сома) – аксон – реагирующий орган или ткань.

Внутреннее строение нейрона по составу органелл сходно с другими структурными единицами тканей. В нем присутствует ядро и цитоплазма, ограниченная мембраной. Внутри располагаются митохондрии и рибосомы, микротрубочки, эндоплазматическая сеть, аппарат Гольджи.

Как формируется аксон

Удлинение и развитие данных отростков нейрона обеспечивается локацией их расположения. Удлинение аксонов становится возможным по причине присутствия на их верхнем завершении филоподий, между которыми размещаются, подобие гофры, мембран­ные образования — ламелоподии. Филопо­дий деятельно взаимодействуют с близлежащими структурами, пробиваясь в ткань все глубже, по итогам чего и осуществляется направ­ленное удлинение аксонов.
Собственно филоподий задает направление увеличению аксона в длину, устанавливая, определенность организации волокон. Участие фило­подий в направленном удлинении нейтритов было подтверждено в практическом эксперименте посредством введения в эмбри­оны, цитохалазина В, разрушающего филоподий. При этом аксо­ны нейронов не дорастали до мозговых центров.

Продуцирование иммуноглобулина, который часто встречается в месте соединения участков роста аксонов с глиальными клетками и, согласно гипотезам ряда ученых, данный факт и предопределяет направление удлинения аксонов в зоне перекреста. Если данный фактор способствует удлинению аксонов, то хондроитинсульфат, напротив, замедляет рост нейтритов.

Синапсы

С их помощью клетки нервной системы соединяются между собой. Существуют разные синапсы: аксо-соматические, -дендритические, -аксональные (главным образом тормозного типа). Также выделяют электрические и химические (первые выявляются достаточно редко в организме). В синапсах различают пост- и пресинаптическую части. Первая содержит мембрану, в которой присутствуют высокоспецифичные протеиновые (белковые) рецепторы. Они реагируют только на определенные медиаторы. Между пре- и постсинаптической частями расположена щель. Нервный импульс достигает первой и активирует особые пузырьки. Они переходят к пресинаптической мембране и попадают в щель. Оттуда они влияют на рецептор постсинаптической пленки. Это провоцирует ее деполяризацию, передающуюся, в свою очередь, посредством центрального отростка следующей нервной клетки. В химическом синапсе передача информации осуществляется только по одному направлению.

Развитие

Закладка нервной ткани происходит на третьей неделе эмбрионального периода. В это время формируется пластинка. Из нее развиваются:

  • Олигодендроциты.
  • Астроциты.
  • Эпендимоциты.
  • Макроглия.

В ходе дальнейшего эмбриогенеза нервная пластинка превращается в трубку. Во внутреннем слое ее стенки располагаются стволовые вентрикулярные элементы. Они пролиферируют и отходят кнаружи. В этой области часть клеток продолжает делиться. В результате они разделяются на спонгиобласты (компоненты микроглии), глиобласты и нейробласты. Из последних формируются нервные клетки. В стенке трубки выделяется 3 слоя:

  • Внутренний (эпендимный).
  • Средний (плащевой).
  • Внешний (краевой) – представлен белым мозговым веществом.

На 20-24 неделе в краниальном сегменте трубки начинается образование пузырей, которые являются источником формирования головного мозга. Оставшиеся отделы служат для развития спинного мозга. От краев нервного желоба отходят клетки, участвующие в образовании гребня. Он располагается между эктодермой и трубкой. Из этих же клеток формируются ганглиозные пластинки, служащие основой для миелоцитов (пигментных кожных элементов), периферических нервных узлов, меланоцитов покрова, компонентов APUD-системы.

Изменчивая обёртка

Миелин постоянно образуется и разрушается в человеческом организме. На синтез и распад миелина могут влиять факторы, связанные с особенностями внешней среды. Например, воспитание. С 1965 по 1989 год Румынией руководил Николае Чаушеску. Он установил жесткий контроль над репродуктивным здоровьем и институтом брака в своей стране: усложнил процедуру развода, запретил аборты и ввел ряд стимулов и льгот для женщин, имевших более пяти детей. Итогом этих мер стало ожидаемое повышение рождаемости. Вместе с рождаемостью увеличилось количество криминальных абортов, не добавивших здоровья румынкам, и возросло количество детей-отказников. Последние воспитывались в детских домах, где с ними не очень-то активно общался персонал. Румынские дети в полной мере ощутили на себе то, что называется социальной депривацией — лишение возможности полноценного общения с другими людьми. Если речь идет о маленьком ребенке, то следствиями социальной депривации станут нарушение формирования эмоциональных привязанностей и расстройство внимания. Когда режим Чаушеску пал, западным ученым предстояло в полной мере оценить результат социальной политики этого диктатора. Румынских детей, имеющих выраженные проблемы со вниманием и установкой социальных контактов, впоследствии стали называть детьми Чаушеску.

Кроме различий при выполнении нейропсихологических тестов, у детей Чаушеску по сравнению с детьми, не находившимися в таких условиях, отличалось даже строение головного мозга [8]. При оценке состояния белого вещества мозга ученые используют показатель фрактальной анизотропии. Он позволяет оценить плотность нервных волокон, диаметр аксонов и их миелинизацию. Чем больше фрактальная анизотропия, тем разнообразнее волокна, которые встречаются в этой области мозга. У детей Чаушеску отмечалось снижение фрактальной анизотропии в пучке белого вещества, соединяющего височную и лобную доли в левом полушарии, то есть связи в этом регионе были недостаточно сложными и разнообразными, с нарушениями миелинизации. Такое состояние связей мешает нормальному проведению сигналов между височной и лобной долями. В височной доле находятся центры эмоционального реагирования (миндалина, гиппокамп), а орбитофронтальная кора лобной доли также связана с эмоциями и принятием решений. Нарушение формирования связей между этими отделами мозга и проблемы в их работе в итоге приводили к тому, что выросшие в детдомах дети испытывали трудности в установлении нормальных отношений с другими людьми.

На миелинизацию также может влиять и состав еды, которую дают ребенку. При белково-энергетической недостаточности питания отмечается снижение образования миелина. Недостаток жирных кислот тоже отрицательно сказывается на синтезе этого ценного вещества, так как оно больше чем на 2/3 состоит из липидов. Дефицит железа, йода и витаминов группы В приводит к снижению образования миелина [9]. В основном эти данные были получены при изучении лабораторных животных, но история, к сожалению, дала людям возможность оценить влияние недостатка еды и на формирующийся мозг ребенка [10]. Голодная зима (голл. hongerwinter) 1944–1945 гг. в Нидерландах привела к тому, что родилось множество детей, чьи матери плохо питались. Оказалось, что в условиях голодания мозг этих детей формировался с нарушениями. В частности, наблюдалось большое количество нарушений именно в белом веществе, то есть возникали проблемы с формированием миелина. В итоге это приводило к разнообразным психическим расстройствам.

Классификация

Нейроны разделяют на виды в зависимости от типа медиатора (посредника проводящего импульса) выделяемого на окончаниях аксона. Это может быть холин, адреналин и пр. От места расположения в отделах ЦНС они могут относиться к соматическим нейронам или к вегетативным. Различают воспринимающие клетки (афферентные) и передающие обратные сигналы (эфферентные) в ответ на раздражение. Между ними могут находиться итернейроны, отвечающие за обмен информацией внутри ЦНС. По типу ответной реакции клетки могут тормозить возбуждение или, наоборот, повышать его.

По состоянию их готовности различают: «молчащие», которые начинают действовать (передают импульс) только при наличии определенного вида раздражения, и фоновые, что постоянно осуществляют мониторинг (непрерывная генерация сигналов). В зависимости от типа воспринимаемой от сенсоров информации меняется и строение нейрона. В этой связи их классифицируют на бимодальные, с относительно простым ответом на раздражение (два взаимосвязанных вида ощущения: укол и — как результат — боль, и полимодальные. Это более сложная структура – полимодальные нейроны (специфическая и неоднозначная реакция).

Что такое нейрон нейронные связи

В переводе с греческого нейрон, или как его еще называют неврон, означает «волокно», «нерв». Нейрон

– это специфическая структура в нашем организме, которая отвечает за передачу внутри него любой информации, в быту называемая нервной клеткой.

Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.

Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Даже у такого малыша есть практический опыт, позволяющий отсекать ненужные действия и стремиться к полезным. Поэтому, например, так сложно отучить ребенка от груди — у него сформировалась крепкая нейронная связь между приложением к материнскому молоку и удовольствию, безопасности, спокойствию.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Составляющие

Глиоцитов в системе в 5-10 раз больше, чем нервных клеток. Они выполняют разные функции: опорную, защитную, трофическую, стромальную, выделительную, всасывающую. Кроме этого, глиоциты обладают способностью к пролиферации. Эпендимоциты отличаются призматической формой. Они составляют первый слой, выстилают мозговые полости и центральный спинномозговой отдел. Клетки участвуют в продуцировании спинномозговой жидкости и обладают способностью всасывать ее. Базальная часть эпендимоцитов имеет коническую усеченную форму. Она переходит в длинный тонкий отросток, пронизывающий мозговое вещество. На его поверхности он формирует глиальную отграничительную мембрану. Астроциты представлены многоотросчатыми клетками. Они бывают:

  • Протоплазматическими. Они расположены в сером мозговом веществе. Эти элементы отличаются наличием многочисленных коротких разветвлений, широких окончаний. Часть последних окружает кровеносные капиллярные сосуды, участвует в формировании гематоэнцефалического барьера. Другие отростки направлены к нейронным телам и по ним осуществляется перенос питательных веществ из крови. Они также обеспечивают защиту и изолируют синапсы.
  • Волокнистыми (фиброзными). Эти клетки находятся в белом веществе. Их окончания слабоветвящиеся, длинные и тонкие. На концах у них присутствуют разветвления и формируются отграничительные мембраны.

Олиодендроциты представляют собой мелкие элементы с отходящими короткими хвостами, расположенными вокруг нейронов и их окончаний. Они формируют глиальную оболочку. Посредством нее передаются импульсы. На периферии эти клетки называют мантийными (леммоцитами). Микроглия является частью макрофагальной системы. Она представлена в виде мелких подвижных клеток с малоразветвленными короткими отростками. В элементах содержится светлое ядро. Они могут формироваться из кровяных моноцитов. Микроглия восстанавливает строение нервной клетки, подвергшейся повреждениям.

Нейроглия

Невроны не способны делиться, потому и появилось утверждение, что нервные клетки не восстанавливаются. Именно поэтому их следует оберегать с особой тщательностью. С основной функцией «няни» справляется нейроглия. Она находится между нервными волокнами.

Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.

Таким образом, нейроглия выполняет ряд функций:

  1. опорную;
  2. разграничительную;
  3. регенераторную;
  4. трофическую;
  5. секреторную;
  6. защитную и т.д.

В ЦНС нейроны составляют серое вещество, а за границами мозга они скапливаются в специальные соединения, узлы – ганглии. Дендриты и аксоны создают белое вещество. На периферии именно благодаря этим отросткам строятся волокна, из которых и состоят нервы.

Строение нейрона

Плазматическая мембрана

окружает нервную клетку. Она состоит из белковых и липидных компонентов, находящихся в жидкокристаллическом состоянии
(модель мозаичной мембраны)
: двуслойность мембраны создается липидами, образующими матрикс, в котрый частично или полностью погружены белковые комплексы. Плазматическая мембрана регулирует обмен веществ между клеткой и ее средой, а также служит структурной основой электрической активности.

Ядро

отделено от цитоплазмы двумя мембранами, одна из которых примыкает к ядру, а другая к цитоплазме. Обе они местами сходятся, образуя поры в ядерной оболочке, служащие для транспорта веществ между ядром и цитоплазмой. Ядро контролирует дифференцировку нейрона в его конечную форму, которая может быть очень сложной и определяет характер межклеточных связей. В ядре нейрона обычно находится ядрышко.

Рис. 1. Строение нейрона (с изменениями по ):

1 — тело (сома), 2 — дендрит, 3 — аксон, 4 — аксонная терминаль, 5 — ядро,

6 — ядрышко, 7 — плазматическая мембрана, 8 — синапс, 9 — рибосомы,

10 — шероховатый (гранулярный) эндоплазматический ретикулум,

11 — субстанция Ниссля, 12 — митохондрии, 13 — агранулярный эндоплаз­матический ретикулум, 14 — микротрубочки и нейрофиламенты,

15 — миелиновая оболочка, образованная шванновской клеткой

Рибосомы

производят элементы молекулярного аппарата для большей части клеточных функций: ферменты, белки-переносчики, рецепторы, трансдукторы, сократительные и опорные элементы, белки мембран. Часть рибосом находится в цитоплазме в свободном состоянии, другая часть прикрепляется к обширной внутриклеточной мембранной системе, являющейся продолжением оболочки ядра и расходящейся по всей соме в форме мембран, каналов, цистерн и пузырьков
(шероховатый эндоплазматический ретикулум).
В нейронах близ ядра образуется характерное скопление шероховатого эндоплазматического ретикулума (
субстанция Ниссля
), служащее местом интенсивного синтеза белка.

Аппарат Гольджи —

система уплощенных мешочков, или цистерн — имеет внутреннюю, формирующую, сторону и наружную, выделяющую. От последней отпочковываются пузырьки, образующие секреторные гранулы. Функция аппарата Гольджи в клетках состоит в хранении, концентрировании и упаковке секреторных белков. В нейронах он представлен более мелкими скоплениями цистерн и его функция менее ясна.

Лизосомы —

заключенные в мембрану структуры,не имеющие постоянной формы, — образуют внутреннюю пищеварительную систему. У взрослых особей в нейронах образуются и накапливаются
липофусциновые гранулы
, происходящие из лизосом. С ними связывают процессы старения, а также некоторые болезни.

Митохондрии

имеют гладкую наружную и складчатую внутреннюю мембраны и являются местом синтеза
аденозинтрифосфорной кислоты (АТФ)
— основного источника энергии для клеточных процессов — в цикле окисления глюкозы (у позвоночных). Большинство нервных клеток лишено способности запасать гликоген (полимер глюкозы), что усиливает их зависимость в отношении энергии от содержания в крови кислорода и глюкозы.

Фибриллярные структуры: микротрубочки

(диаметр 20-30 нм),
нейрофиламенты
(10 нм) и
микрофиламенты
(5 нм). Микротрубочки и нейрофиламенты участвуют во внутриклеточном транспорте различных веществ между телом клетки и отходящими отростками. Микрофиламенты изобилуют в растущих нервных отростках и, по-видимому, управляют движениями мембраны и текучестью подлежащей цитоплазмы.

Синапс —

функциональное соединение нейронов, посредством которого происходит передача электрических сигналов между клетками.
Щелевой контакт
обеспечивает электрический механизм связи между нейронами
(электрический синапс).

Рис. 2. Строение синаптических контактов:

а — щелевого контакта, б — химического синапса (с изменениями по ):

1 — коннексон, состоящий из 6 субъединиц, 2 — внеклеточное пространство,

3 — синаптическая везикула, 4 — пресинаптическая мембрана, 5 — синаптическая

щель, 6 — постсинаптическая мембрана,7 — митохондрия, 8 — микротрубочка,

9 — нейрофиламенты

Химический синапс

отличается ориентацией мембран в направлении от нейрона к нейрону, что проявляется в неодинаковой степени уплотненности двух смежных мембран и наличием группы небольших
везикул
вблизи синаптической щели. Такая структура обеспечивает передачу сигнала путем экзоцитоза
медиатора
из везикул.

Синапсы также классифицируются в зависимости от того, чем они образованы: аксо-соматические, аксо-дендритные, аксо-аксонные и дендро-дендритные.

Дендриты

Дендриты – древовидные расширения в начале нейронов, которые служат для увеличения площади поверхности клетки. У многих нейронов их большое количество (тем не менее, встречаются и такие, у которых есть только один дендрит). Эти крошечные выступы получают информацию от других нейронов и передают её в виде импульсов к телу нейрона (соме). Место контакта нервных клеток, через которое передаются импульсы – химическим или электрическим путём, – называется синапсом.

Характеристики дендритов:

  • Большинство нейронов имеют много дендритов
  • Тем не менее, некоторые нейроны могут иметь только один дендрит
  • Короткие и сильно разветвленные
  • Участвует в передаче информации в тело клетки

Сома

Сомой, или телом нейрона, называется место, где сигналы от дендритов аккумулируются и передаются дальше. Сома и ядро не играют активной роли в передаче нервных сигналов. Эти два образования служат скорее для поддержания жизнедеятельности нервной клетки и сохранения её работоспособности. Этой же цели служат митохондрии, которые обеспечивают клетки энергией, и аппарат Гольджи, который выводит продукты жизнедеятельности клеток за пределы клеточной мембраны.

Аксонный холмик

Аксонный холмик – участок сомы, от которого отходит аксон, – контролирует передачу нейроном импульсов. Именно тогда, когда общий уровень сигналов превышает пороговое значение холмика, он посылает импульс (известный, как потенциал действия) далее по аксону, к другой нервной клетке.

Аксон

Аксон – это удлиненный отросток нейрона, который отвечает за передачу сигнала от одной клетки к другой. Чем больше аксон, тем быстрее он передаёт информацию. Некоторые аксоны покрыты специальным веществом (миелином), который выступает в качестве изолятора. Аксоны, покрытые миелиновой оболочкой, способны передавать информацию намного быстрее.

Характеристики Аксона:

  • У большинства нейронов имеется только один аксон
  • Участвует в передаче информации от тела клетки
  • Может или не может иметь миелиновую оболочку

Терминальные ветви

На конце Аксона расположены терминальные ветви – образования, которые отвечают за передачу сигналов к другим нейронам. В конце терминальных ветвей как раз и находятся синапсы. В них для передачи сигнала к другим нервным клеткам служат особые биологически активные химические вещества – нейромедиаторы.

Теги: мозг, нейрон, нервная система, строение

Есть что сказать? Оставть комментарий!:

Рост и развитие аксона[править | править код]

Нейрон
Рост аксонов происходит через их окружающую среду, в виде конуса роста, который находится в наконечнике аксона. Конус роста имеет широкий лист как расширение, названное lamellipodia, которое содержат выпячивания, названные filopodia. Filopodia — механизм, представляющий процесс придержки поверхностей. Он анализирует ближайшую окружающую среду. Актин играет главную роль в подвижности этой системы. Окружающие среды с высокими уровнями молекул прилипания ячейки или «КУЛАКА» создают идеальную окружающую среду для аксонального роста. Это, кажется, обеспечивает «липкую» поверхность для аксонов, для раста вперед. Примеры КУЛАКА, определенного для нервных систем включают: N-КУЛАК, neuroglial КУЛАК или NgCAM, ПОМЕТЬТЕ 1, МЭГ, и DCC, все из которых — часть суперсемьи иммуноглобулина. Другой набор молекул звонковый, внеклеточные матричные молекулы прилипания также обеспечивают липкое основание для аксонов, чтобы расти вперед. Примеры этих молекул включают laminin, fibronectin, tenascin, и perlecan. Некоторые из них — поверхность, привязанная к ячейкам и таким образом действуют, как короткие аттрактанты диапазона или repellents. Другие — difusible лиганды и таким образом могут долго сохранять эффекты диапазона.

Ячейки звонковые, ячейки указательного столба помогают в руководстве ростом аксона нейронала. Эти ячейки — типично другой, иногда незрелый, нейроны.

Вывод

Физиология человека поражает своей слаженностью. Мозг стал величайшим творением эволюции. Если представлять организм в форме слаженной системы, то нейроны – это провода, по которым проходит сигнал от головного мозга и обратно. Их число огромно, они создают уникальную сеть в нашем организме. Ежесекундно по ней проходят тысячи сигналов. Это потрясающая система, которая позволяет не только функционировать организму, но и контактировать с окружающим миром.

Без невронов тело просто не сможет существовать, потому следует постоянно заботиться о состоянии своей нервной системы

Важно правильно питаться, избегать переутомления, стрессов, вовремя лечить заболевания

Последствия разрушения дендритов

Они хоть и после устранения условий, вызвавших нарушения в их построении, способны восстанавливаться, полностью нормализуя обмен веществ, но только если эти факторы недолго, незначительно воздействовали на нейрон, в противном же случае, части дендритов погибают, и так как не имеют возможности покинуть организм, накапливаются в их цитоплазме, провоцируя отрицательные последствия.

У животных это приводит к нарушению форм поведения, за исключением простейших условных рефлексов, а у человека может вызвать нарушения нервной системы.

Кроме того, рядом ученных доказано, что при слабоумии в пожилом возрасте и заболевание Альцгеймера у нейронов не отслеживаются отростки. Стволы дендритов внешне становятся похожи на обгоревшие (обугленные).

Не менее важным является и изменения количественного эквивалента шипиков вследствие патогенных условий. Так как они признаны структурными компонентами межнейрональных контактов, то нарушения, возникающие в них, могут спровоцировать достаточно серьезные нарушениям функций мозговой деятельности.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]